

TX2003 series High-voltage High-current Darlington Transistor Arrays

Features

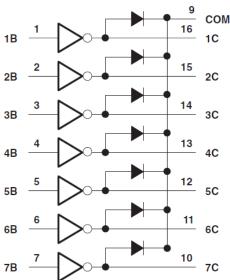
- 500-mA-Rated Collector Current(single output)
- High-Voltage Outputs:50V
- Output Clamp Diodes

- Inputs Compatible With Various Types of Logic
- Relay-Driver Applications

General Description

The TX2003 is high-voltage high-current Darlington transistor arrays each containing seven open collector common emitter pairs. Each pair is rated at 500mA. Suppression diodes are included for inductive load driving, the inputs and outputs are pinned in opposition to simplify board layout.

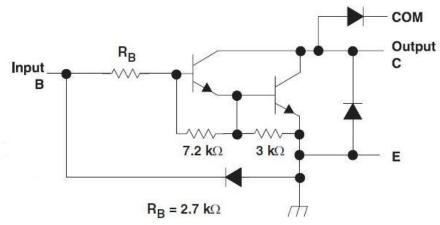
These devices are capable of driving a wide range of loads including solenoids, relays, DC motors, LED displays, filament lamps, thermal print-heads and high-power buffers.


The TX2003 is available in both a small outline 16-pin package (DIP16, SOP16, SSOP16 and TSSOP16).

Pin Assignments

Connection Diagram

LOGIC DIAGRAM



TX2003 series High-voltage High-current Darlington Transistor Arrays

Pin Descriptions

Pin Number	Pin Name	Function
1	1B	Input pair1
2	2B	Input pair1
3	3B	Input pair1
4	4B	Input pair1
5	5B	Input pair1
6	6B	Input pair1
7	7B	Input pair1
8	Е	Common Emitter (ground)
9	COM	Common Clamp Diodes
10	7C	Output pair7
11	6C	Output pair6
12	5C	Output pair5
13	4C	Output pair4
14	3C	Output pair3
15	2C	Output pair2
16	1C	Output pair1

Functional Block Diagram

Note: All resistor values shown are nominal.

The collentor-emitter diode is a parasitic structure and should not be used to conduct current. If the collector(s) go below ground an external Schoottky diode should be added to clamp negative undershoots.

TX2003 series High-voltage High-current Darlington Transistor Arrays

Absolute Maximum Ratings (1)

At 25°C free-air temperature (unless otherwise noted)

Symbol	Parameter		Min	Max	Unit
Vcc	Collector to emitter voltage			50	V
V_R	Clamp diode reverse voltage(2)			50	V
Vı	Input voltage(2)			30	V
I _{CP}	Peak collector current	See typical characteristics		500	mA
I _{OK}	Output clamp current			500	mA
I _{TE}	Total emitter-terminal current			-2.5	Α
T _A	Operating free-air temperature range	TX2003	-40	+105	°C
θ_{JA}	Thermal Resistance Junction-to-Ambient(3)			63	°C/W
θ_{JC}	Thermal Resistance Junction-to-Case(4)			12	0, , ,
TJ	Operating virtual junction temperature			+150	°C
T _{STG}	Storage temperature range		-65	+150	°C
ESD	Human Body Mo	ode		3000	V

- (1) Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
- (2) All voltage values are with respect to the emitter/substrate terminal E, unless otherwise noted.
- (3) Maximum power dissipation is a function of TJ(max), θJA, and TA. The maximum allowable power dissipation at any allowable ambient temperature is PD = (TJ(max) – TA)/θJA. Operating at the absolute maximum TJ of 150°C can affect reliability.
- (4) Maximum power dissipation is a function of TJ(max), θJC, and TA. The maximum allowable power dissipation at any allowable ambient temperature is PD = (TJ(max) – TA)/θJC. Operating at the absolute maximum TJ of 150°C can affect reliability.

Recommended Operating Conditions

Symbol	Parameter	Min	Max	Unit
VCC	Collector to Emitter voltage	-	50	V
TA	Operating Ambient Temperature	-40	+105	$^{\circ}$ C

Electrical Characteristics(TA=+25℃, unless otherwise specified)

Parameter		Test	Tool Com		TX2003A		Unit	
	i arameter		Figure Test Conditions			TYP	MAX	Unit
				IC = 200 mA			2.4	
V _{I(on)}	On-state input voltage	Figure 6	VCE = 2 V	IC = 250 mA	-		2.7	V
				IC = 300 mA	1		3	
			II = 250 μA,	IC = 100 mA	1	0.9	1.1	
V CE(sat)	Collector-emitter saturation voltage	Figure 5	II = 350 μA,	IC = 200 mA	1	1	1.3	٧
	-		II = 500 μA,	IC = 350 mA	1	1.2	1.6	
		Figure 1	VCE = 50 V,	II = 0			50	
CEX	Collector cutoff current	Figure 2	VCE = 50 V, TA = +105°C	II = 0			100	μΑ
V _F	Clamp forward voltage	Figure 8	IF = 350 mA			1.7	2	V
l (off)	Off-state input current	Figure 3	VCE = 50 V,	VCE = 50 V, IC = 500 μA		65		μΑ
			VI = 3.8	85 V		0.93	1.35	
П	Input current	Figure 4	VI = 5	5 V	1			mA
			VI = 12 V		1			
	Clamp reverse everent	Figure 7					50	
IR	Clamp reverse current	Figure 7	VR = 50 V	TA = 70°C	-		100	μA
Ci	Input capacitance		VI = 0, f	= 1 MHz		15	25	pF

Switching Characteristics (TA = +25°C, unless otherwise specified)

	Parameter	Test Conditions	TX2003			UNIT
			MIN	TYP	MAX	
t PLH	Propagation delay time, low- to high-level output	See Figure 9		0.25	1	μs
t PHL	Propagation delay time, high- to low-level output	See Figure 9		0.25	1	μs
V _{OH}	High-level output voltage after switching	VS = 50 V, IO = 300 mA, See Figure 9	VS-20			mV

Parameter Measurement Information

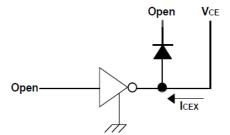


Fig.1 ICEX Test Circuit

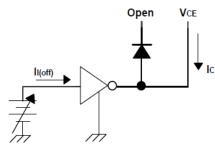


Fig.3 II(off) Test Circuit

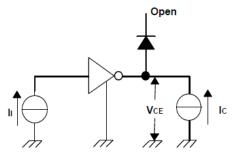


Fig. 5 hFE , VCE(sat) Test Circuit

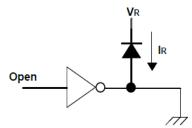


Fig. 7 IR Test Circuit

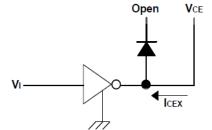


Fig.2 ICEX Test Circuit

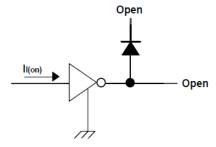


Fig.4 In Test Circuit

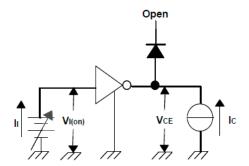


Fig. 6 VI(on) Test Circuit

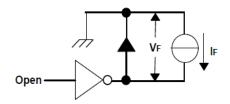


Fig. 8 VF Test Circuit

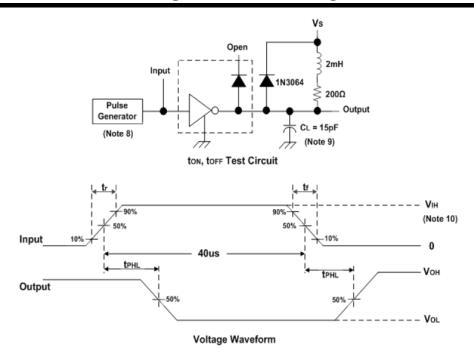


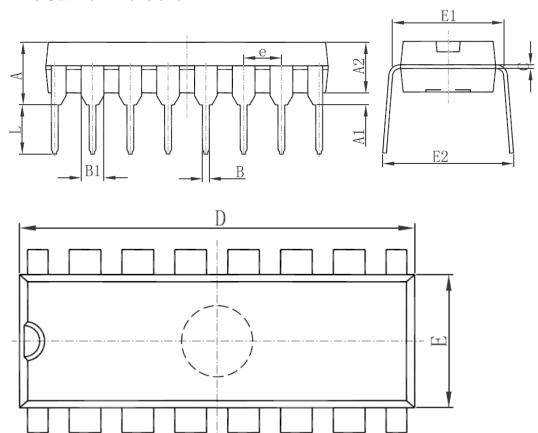
Fig. 9 Latch-Up Test Circuit and Voltage Waveform

Notes: 8. The pulse generator has the following characteristics:

Pulse Width=12.5Hz, output impedance 50Ω, tr≤5ns, tr≤10ns.

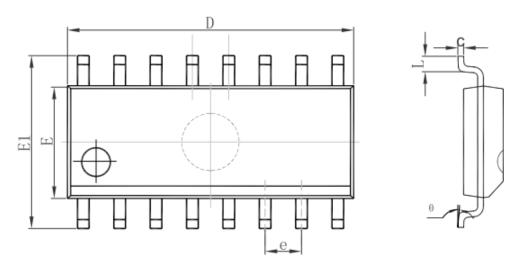
9. C_L includes prove and jig capacitance.

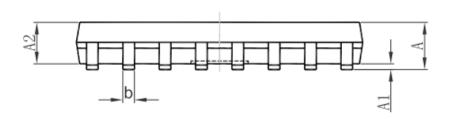
10. V_{IH}=3V


Marking Information

Marking	Designator	Description
	ULN2003	Standard
ULN2003	SSSS	Lot NO
SSSSWWX	WW	Product Week
	X	Product Code

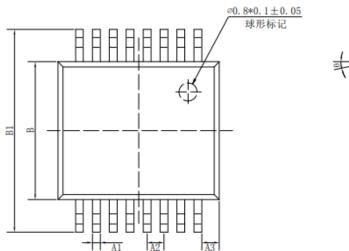
TX2003 series High-voltage High-current Darlington Transistor Arrays

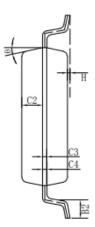

DIP16 Outline Dimensions

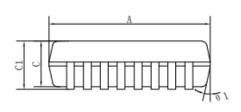


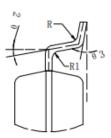
Country of	Dimensions Ir	n Millimeters	Dimensions	In Inches
Symbol	Min	Max	Min	Max
Α	3. 710	4. 310	0. 146	0. 170
A1	0. 510		0. 020	
A2	3. 200	3. 600	0. 126	0. 142
В	0. 380	0. 570	0. 015	0. 022
B1	1. 524 (BSC)		0. 060 (BSC)	
С	0. 204	0. 360	0. 008	0. 014
D	18. 800	19. 200	0. 740	0. 756
E	6. 200	6. 600	0. 244	0. 260
E1	7. 320	7. 920	0. 288	0. 312
е	2. 540	(BSC)	0. 100	(BSC)
L	3.000	3.600	0. 118	0. 142
E2	8. 400	9. 000	0. 331	0. 354

SOP16 Outline Dimensions

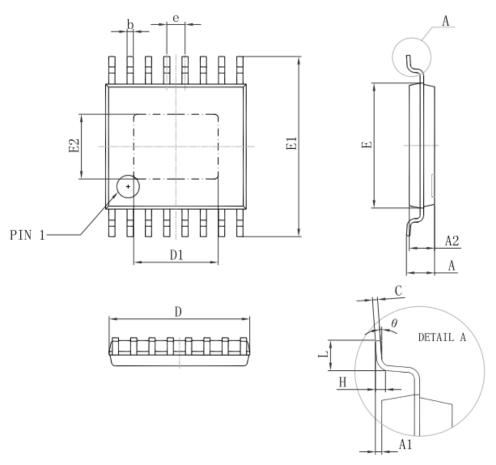





Country of	Dimensions Ir	Millimeters	Dimensions	In Inches
Symbol	Min	Max	Min	Max
Α	1. 350	1. 750	0. 053	0. 069
A1	0. 100	0. 250	0. 004	0. 010
A2	1. 350	1. 550	0. 053	0. 061
b	0. 330	0. 510	0. 013	0. 020
С	0. 170	0. 250	0. 007	0. 010
D	9. 800	10. 200	0. 386	0. 402
E	3. 800	4. 000	0. 150	0. 157
E1	5. 800	6. 200	0. 228	0. 244
е	1. 270	(BSC)	0. 050	(BSC)
L	0. 400	1. 270	0. 016	0. 050
θ	0°	8°	0°	8°



SSOP16 Outline Dimensions



标注	最小(mm)	最大(mm)	标注	最小(mm)	最大(mm)	
A	6. 15	6. 25	C3	0.	152	
A1	0.3	OTYP	C4	0.	172	
A2	0. 6	5TYP	Н	0.05	0. 15	
A3	0. 6	75TYP	θ	12° TYP4		
В	5. 25	5. 35	θ 1	12	° TYP4	
B1	7. 65	7. 95	θ 2	10	° TYP	
B2	0.60	0.80	θ 3	0° ~ 8°		
С	1. 70	1.80	R	0. 20TYP		
C1	1. 75	1.95	R1	0. 15TYP		
C2	0. 7	99				

TX2003 series High-voltage High-current Darlington Transistor Arrays

TSSOP16 Outline Dimensions

Symbol	Dimensions In	Dimensions In Millimeters		s In Inches
Symbol	Min	Max	Min	Max
D	4. 900	5. 100	0. 193	0. 201
D1	2.900	3.100	0.114	0. 122
E	4.300	4.500	0.169	0. 177
b	0. 190	0.300	0.007	0.012
c	0.090	0. 200	0.004	0.008
E1	6. 250	6.550	0.246	0. 258
E2	2. 200	2.400	0. 087	0.094
A		1.150		0.043
A2	0.800	1.000	0.031	0. 039
A1	0.020	0.150	0.001	0. 006
e	0.65 (BSC)		0. 026	(BSC)
L	0.500	0.700	0.02	0. 028
Н	0.25(TYP)		0.01(TYP)	
θ	1°	7°	1°	7°

© Shanghai TX Electronics Sci-Tech Co., Ltd

TX cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a TX product. No circuit patent license, copyrights or other intellectual property rights are implied. TX reserves the right to make changes to their products or specifications without notice. Customers are advised to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete.