

Features

- Built-in protecting diode for chip reverse
 power connecting
- Operating voltage range:3.5V~24V
- Output sink current up to 0.3A@12V
- On-Chip High sensitivity Hall-effect Sensor
- 40°C to 125°C Operating Temperature

Applications

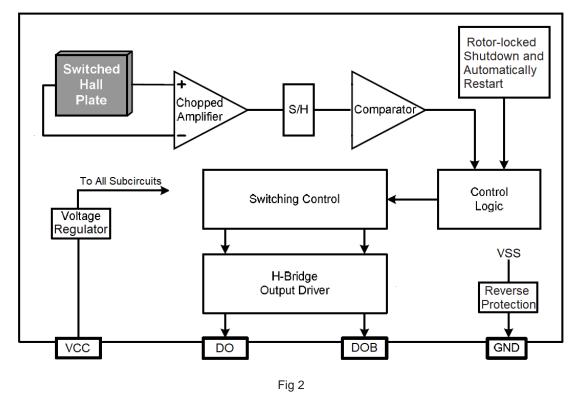
• For 5V/12V single coil DC Fan

- Rotor-locked shutdown and automatically restart function
- Low Profile SIP-4L Package

General Description

TX2987 is integrated Hall sensors with output drivers, mainly designed for electronic commutation of brush-less DC Fan. This IC is using HV BCD process internally includes the regulator, protecting diode, Hall plate, amplifier, comparator, and a pair of complementary open-Drain outputs (DO, DOB). To avoid coil burning, rotor-lock shutdown detection circuit shut down the output driver if the rotor is blocked and then the automatic recovery circuit will try to restart the motor. This function repeats while rotor is blocked. Until the blocking is removed, the motor recovers running normally.

Pin Assignment


Fig 1 TO94

Pin Description

Pin Number	Pin Name	Function			
1	VCC	Supply voltage			
2	DO	Output 1			
3 DOB		Output 2			
4	GND	Ground			

Block Diagram

Absolute Maximum Ratings

Table1 (Ta=25℃)

Symbol	Parameter		Value	Unit
VCC	Sup	ply Voltage	28	V
V _{RCC}	Reverse Protection Voltage		-28	V
В	Magnet	ic Flux Density	Unlimited	Gauss
	Quitaut	Continuous	300	mA
IO Output Current	•	Hold	600	mA
	Current	Peak(start up)	800	mA
PD	Power Dissipation		550	mW
θJA	Thermal	Die to atmosphere	227	°C/W
θ JC	Resistance	Die to package case	49	°C/W
TSTG	Storage Temperature		-50 to 150	°C

Note:Stresses greater than those listed under "Absolut Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of these or any other conditions beyond those indicated under "Recommended Operating Conditions" is not implied. "Absolute Maximum Ratings" for extended period may affect device reliability.

Recommended Operating Conditions

Table 2 (Ta=25℃)

Parameter	Symbol	Min	Max	Unit
Supply Voltage	VCC	3.5	24	V
Ambient Temperature	Та	-40	85	°C

Electrical Characteristics

Table 3 (VCC=12V,Ta=25°C, unless otherwise specified)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
V_{SAT_sink}	Output Saturation	lo=200mA,	-	0.3	-	V
VSAT_source	Voltage	lo=200mA		VCC-0.6	-	V
lcc	Supply Current	VCC=12V,Output Open		4.5	-	mA
T_Dead	Dead Time	$R_L=820 \Omega$ $C_L=20 pF$		10		us
tr	Output Rise Time	$R_L=820 \Omega$ $C_L=20 pF$	-	0.5	-	us
tf	Output Fall Time	RL=820 Ω CL=20pF	-	2.0	-	us
Ton	Locked Rotor Period		-	0.2	-	S
Toff	Locked Rotor Period		-	1.2	-	S

Magnetic Characteristics

Table 4 (Ta=25℃)

Characteristics	Symbol	Min	Тур	Max	Unit
Operating Point	Вор	15	25	50	Gauss
Releasing Point	Brp	-50	-25	-15	Gauss
Hysteresis	Bhys	30	50	100	Gauss

Driver Output vs. Magnetic Pole

Table 5 (Ta=25℃)

Parameter	Test Conditions	DO	DOB
North Pole	B <brp< td=""><td>High</td><td>Low</td></brp<>	High	Low
South Pole	B>Bop	Low	High

Hysteresis Characteristics

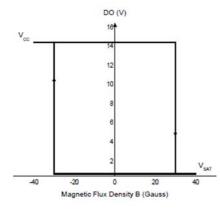
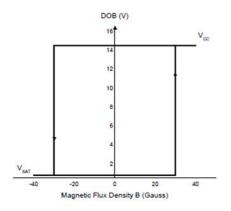
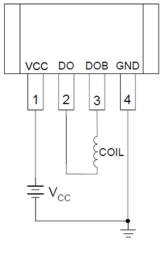
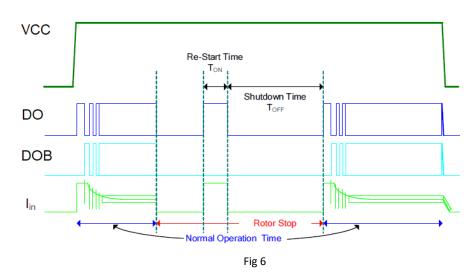
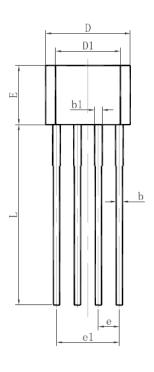


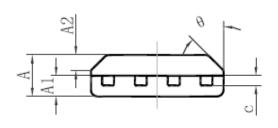
Fig 3 VDO vs. Magnetic Flux Density


Fig 4 VDOB vs. Magnetic Flux Density

Application Circuits


Output Waveforms Description



Package Information

TO-94 PACKAGE OUTLINE DIMENSIONS

Fig 7

Symbol	Dimensions In Millimeters		Dimensions In Inches	
Symbol	Min.	Max.	Min.	Max.
A	1.400	1.800	0.055	0.071
A1	0.700	0.900	0.028	0.035
A2	0.500	0.700	0.020	0.028
b	0.360	0.500	0.014	0.020
b1	0.380	0.550	0.015	0.022
С	0.360	0.510	0.014	0.020
D	4.980	5.280	0.196	0.208
D1	3.780	4.080	0.149	0.161
E	3.450	3.750	0.136	0.148
e	1.270	0.050 TYP.		TYP.
e1	3.710	3.910	0.146	0.154
L	14.900	15.300	0.587	0.602
θ	45°	TYP.	45° TYP.	

© Shanghai TX Electronics Sci-Tech Co., Ltd

TX cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a TX product. No circuit patent license, copyrights or other intellectual property rights are implied. TX reserves the right to make changes to their products or specifications without notice. Customers are advised to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complet.