

Features

- Built-in protecting diode for chip reverse power connecting
- Operating voltage range:3.5V~24V
- Output sink current up to 0.3A@12V
- On-Chip High sensitivity Hall-effect Sensor
- -40°C to 125°C Operating Temperature
- Low Profile SIP-4L Package

Applications

• For 5V/12V single coil DC Fan

General Description

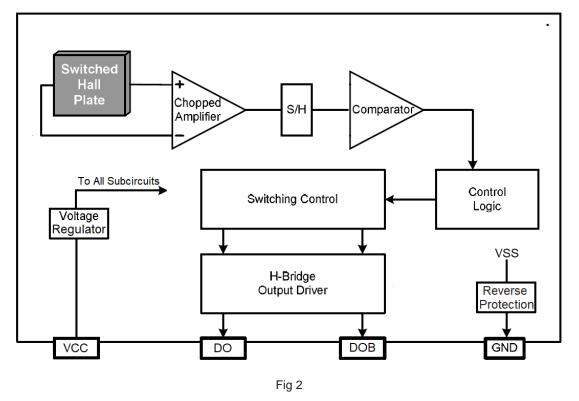
TX477H is integrated Hall sensors with output drivers, mainly designed for electronic commutation of brush-less DC Fan. This IC is using HV BCD process internally includes the regulator, protecting diode, Hall plate, amplifier,

comparator, and a pair of complementary open-Drain outputs (DO, DOB).

This function repeats while rotor is blocked. Until the blocking is removed, the motor recovers running normally.

Pin Assignment




Fig 1 TO94

Pin Description

Pin Number	Pin Name	Function	
1	VCC	Supply voltage	
2	DO	Output 1	
3	DOB	Output 2	
4 GND		Ground	

Block Diagram

Absolute Maximum Ratings

Table1 (Ta=25℃)

Symbol	Parameter		Value	Unit
VCC	Supply Voltage		28	V
V _{RCC}	Reverse Protection Voltage		-28	V
В	Magnetic Flux Density		Unlimited	Gauss
	Output Current	Continuous(12V)	300	mA
Ю		Hold	600	mA
		Peak (start up)	800	mA
PD	Power Dissipation		550	mW
θ JA	Thermal	Die to atmosphere	227	°C/W
θ JC	Resistance	Die to package case	49	°C/W

Note: Stresses greater than those listed under "Absolut Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of these or any other conditions beyond those indicated under "Recommended Operating Conditions" is not implied. "Absolute Maximum Ratings" for extended period may affect device reliability.

Recommended Operating Conditions

Table 2 (Ta=25℃)

Parameter	Symbol	Min	Max	Unit
Supply Voltage	VCC	3.5	24	V
Operating Temperature	То	-40	125	°C
Storage Temperature	Ts	-55	150	°C

Electrical Characteristics

Table 3 (VCC=12V,Ta=25°C, unless otherwise specified)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
V_{SAT_sink}	Output Saturation	Io=200mA,	-	0.3	-	V
VSAT_source	Voltage	lo=200mA		VCC-0.6	-	V
las		VCC=12V,		4.5		mA
lcc	Supply Current	Output Open		4.5	-	ША
T_Dead	Dead Time	$R_L=820 \Omega$ $C_L=20 pF$		10		us
tr	Output Rise Time	$R_L=820 \Omega$ $C_L=20 pF$	-	0.5	-	us
tf	Output Fall Time	$R_L=820 \Omega$ $C_L=20 pF$	-	2.0	-	us

Magnetic Characteristics

Table 4 (Ta=25℃)

Characteristics	Symbol	Min	Тур	Max	Unit
Operating Point	Вор	15	25	50	Gauss
Releasing Point	Brp	-50	-25	-15	Gauss
Hysteresis	Bhys	30	50	100	Gauss

Driver Output vs. Magnetic Pole

Table 5 (Ta=25℃)

Parameter	Test Conditions	DO	DOB
North Pole B <brp< td=""><td>High</td><td>Low</td></brp<>		High	Low
South Pole B>Bop		Low	High

Hysteresis Characteristics

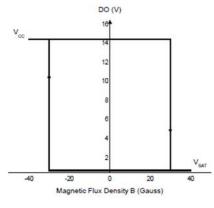


Fig 3 VDO vs. Magnetic Flux Density

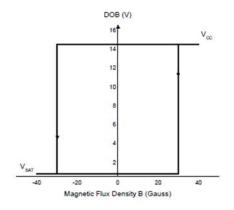
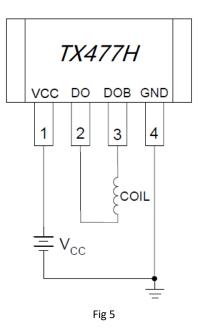
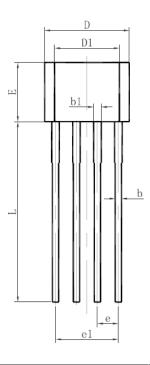
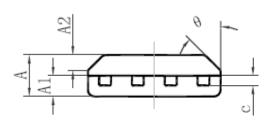



Fig 4 VDOB vs. Magnetic Flux Density


Application Circuits



Package Information

TO-94 PACKAGE OUTLINE DIMENSIONS

Symbol	Dimensions In Millimeters		Dimensions In Inches		
Symbol	Min.	Max.	Min.	Max.	
Α	1.400	1.800	0.055	0.071	
A1	0.700	0.900	0.028	0.035	
A2	0.500	0.700	0.020	0.028	
b	0.360	0.500	0.014	0.020	
b1	0.380	0.550	0.015	0.022	
с	0.360	0.510	0.014	0.020	
D	4.980	5.280	0.196	0.208	
D1	3.780	4.080	0.149	0.161	
E	3.450	3.750	0.136	0.148	
e	1.270	TYP.	0.050 TYP.		
e1	3.710	3.910	0.146	0.154	
L	14.900	15.300	0.587	0.602	
θ	45° TYP.		45° TYP.		

© Shanghai TX Electronics Sci-Tech Co., Ltd

TX cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a TX product. No circuit patent license, copyrights or other intellectual property rights are implied. TX reserves the right to make changes to their products or specifications without notice. Customers are advised to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complet.